Pemanfaatan Epistemic Network Analysis sebagai Pendukung Analisis Sentimen dalam Collaborative Learning

  • Roy Parsaoran Universitas Kristen Maranatha
  • Jonathan Bernad Universitas Kristen Maranatha
  • Tifani Astadini Universitas Kristen Maranatha
  • Hapnes Toba Universitas Kristen Maranatha
  • Maresha Caroline Wijanto Universitas Kristen Maranatha
  • Mewati Ayub Universitas Kristen Maranatha


A lot of blended learning methods have been applied to modern learning system. One of the most used learning methods is collaborative learning which combines and extends group discussion. The recorded data during a collaborative learning session could be useful to enhanced the interaction among the class members, including the lecturer. Using sentiment analysis, the discussion can be categorized whether the discussion goes well or not, it can also be seen which group members are most active and have a positive impact on the work assigned to the group. In this preliminary research, sentiment analysis approach will be combined with Epistemic Network Analysis (ENA) so that it can see a graphical depiction of each member's contribution in a group discussion. Our experimental results show that ENA displays better insights of the students activities than only using the sentiment analysis.


[1] Dewi, M.R., Mudakir, I. and Murdiyah, S. Pengaruh Model Pembelajaran Kolaboratif berbasis Lesson Study terhadap Kemampuan Berpikir Kritis Siswa. Jurnal Edukasi, 3 (2), pp.29-33, 2016.
[2] B. Liu. Sentiment Analysis and Opinion Mining. USA: Morgan & Claypool Publishers, 2012.
[3] Hartanto, H. Text Mining dan Sentimen Analisis Twitter pada Gerakan LGBT. Intuisi: Jurnal Psikologi Ilmiah, 9 (1), pp.18-25, 2017.
[4] Mello, R.F. and Gašević, D., 2019, October. What is the effect of a dominant code in an epistemic network analysis?. In International Conference on Quantitative Ethnography (pp. 66-76). Springer, Cham.
[5] Shaffer, D.W., Collier, W. and Ruis, A.R. A tutorial on epistemic network analysis: Analyzing the structure of connections in cognitive, social, and interaction data. Journal of Learning Analytics, 3 (3), pp.9-45, 2016.
[6] Breiman, L.. Random forests. Machine learning, 45 (1), pp.5-32, 2001.
[7] Arifin, O. and Sasongko, T.B. Analisa Perbandingan Tingkat Performansi Metode Support Vector Machine dan Naïve Bayes Classifier Untuk Klasifikasi Jalur Minat SMA. SEMNASTEKNOMEDIA ONLINE, 6 (1), pp.1-2, 2018.
[8] Sari, A.P., Saptono, R. and Suryani, E. The Implementation of Jaro-Winkler Distance and Naive Bayes Classifier for Identification System of Pests and Diseases on Paddy. ITSMART: Jurnal Teknologi dan Informasi, 7 (1), pp.1-7, 2018.
[9] Lestari, A.R.T., Perdana, R.S. and Fauzi, M.A. Analisis Sentimen Tentang Opini Pilkada DKI 2017 pada Dokumen Twitter Berbahasa Indonesia Menggunakan Naive Bayes dan Pembobotan Emoji. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, p. 964X. 2017.
[10] Ling, J., Kencana, I.P.E.N. and Oka, T.B. Analisis Sentimen Menggunakan Metode Naïve Bayes Classifier dengan Seleksi Fitur Chi Square. E-Jurnal Matematika, 3(3), pp.92-99, 2014.
[11] Sari, R. and Hayuningtyas, R.Y. Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Pada Wisata TMII Berbasis Website. Indonesian Journal on Software Engineering (IJSE), 5(2), pp.51-60, 2019.
[12] Marquart, C.L. (2019). rENA: Epistemic Network Analysis. [ONLINE] Available at:
[13] Leydesdorff, L. and Welbers, K. The semantic mapping of words and co-words in contexts. Journal of Informetrics, 5(3), pp.469-475, 2011.
[14] Swiecki, Z. and Shaffer, D.W. iSENS: an integrated approach to combining epistemic and social network analyses. In Proceedings of the Tenth International Conference on Learning Analytics & Knowledge (pp. 305-313), 2020.
How to Cite
PARSAORAN, Roy et al. Pemanfaatan Epistemic Network Analysis sebagai Pendukung Analisis Sentimen dalam Collaborative Learning. Jurnal Linguistik Komputasional, [S.l.], v. 3, n. 2, p. 40 - 47, sep. 2020. ISSN 2621-9336. Available at: <>. Date accessed: 03 aug. 2021. doi: